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A. The Laue Condition and Bragg’s Law 

In a diffraction grating for visible light, constructive interference 

between light rays passing through slits of the grating leads to 

light intensity ONLY at certain locations on the screen: 
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Starting Assumptions 

For x-rays, electrons, and neutrons incident on a crystal, 

diffraction occurs due to interference between waves scattered 

elastically from the atoms in the crystal.   

 

If we treat the incident waves as plane waves and the atoms as 

ideal point scatterers, the scattered waves are spherical waves.  

We will assume they are also isotropic.  



Physical Model for X-ray Scattering 

Consider two parallel plane waves scattered elastically from two 

nearby atoms A and B in a solid material:  
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Phase Difference Between the Waves 

For the spherical waves scattered from atoms A and B (of the same type): 
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where:    = position of detector relative to A 
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 = position of B relative to A 

 = phase difference between           and      
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Sum of Scattered Waves  

So the wave scattered from the jth atom is:  
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For a small sample, the distances rj are all essentially the same  ( R).  Thus 

we see that constructive and destructive interference between the scattered 

waves that reach the detector is due to the atomic sum.  The detector location 

is determined by the scattered wave vector       and thus        . 

= position of atom j relative to A 

Thus the total scattered wave at the detector is:  
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Summing Over All Atoms 

Now assume a crystal whose lattice has base 

vectors              , with a total number of 

atoms along each axis M, N, and P, 

respectively:  
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which can be rearranged to give:  

Thus the amplitude of the total wave at the detector is proportional to:  
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Evaluating the Sum 

We need 

only 

evaluate the 

sum inside 

the brackets: 

which 

simplifies 

to give:  

Now the intensity of 

the total wave at the 

detector is given by:  
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The Bottom Line 

Now use the familiar identity: 

which gives the result:  

This is the same as the intensity of an M-slit diffraction grating.  If M is large 

( 108 for a macroscopic crystal), it has very narrow, intense peaks where the 

denominator goes to zero.  In between the peaks the intensity is essentially 

zero.  Remembering that there are three of these terms in the intensity 

equation, the peaks occur when:  
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Compare these relations to 

the properties of reciprocal 

lattice vectors (from ch. 2): 
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Summary:  the Laue Condition 

Replacing  n1n2n3 with the familiar hkl, we see by inspection that these 

three conditions are equivalently expressed as: 
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The Laue condition 

(Max von Laue, 1911) 

So, the condition for  nonzero intensity in scattered x-rays is that the 

scattering vector       is a translation vector of the reciprocal lattice.  Since 

each reciprocal lattice point indexed by hkl corresponds to a family of (hkl) 

lattice planes, we see that the incoming x-rays scattered from the (hkl) lattice 

planes undergo constructive interference at only one position of the detector. 
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The first experimental confirmation of x-ray diffraction by crystalline solid 

came from von Laue’s young colleagues Friedrich and Knipping in 1911.  

Despite this, von Laue was more inclined to mathematical rather than 

experimental analysis of x-ray scattering.  The practical application of von 

Laue’s work came only through the efforts of others. 



A Simpler Formulation 

Just one year after von Laue’s work, two British physicists developed a 

simpler (and easier to use) expression for the x-ray diffraction condition, and 

actually used it to determine the crystal structure of NaCl!   

This was a father & son team:  William Henry Bragg and William Lawrence 

Bragg.  The father is shown at left below, along with Max von Laue.   

The Braggs’ experimental skill and 

their simple equation allowed them to 

quickly determine the crystal structure 

of many common salts and metals.  

Max von Laue and the Braggs received 

the Nobel Prize in physics in 1914 and 

1915, respectively. 

 



From Laue to Bragg 

Do you see why this 

angle is 2 ? 

Now the magnitude of the scattering vector       depends on the angle 

between the incident wave vector and the scattered wave vector: 
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A Final Comment 

However, in practice we need only consider the n = 1 values, since the n = 2 

and higher values for the (hkl) planes correspond to the n = 1 value for the 

(nh nk nl) planes, and this would be redundant. 

The interplanar distance between (hkl) planes is        .  By inspection we can 

see that the distance between (nh nk nl) planes is            .  This means that 

we can write the Bragg condition for these planes as: 
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Question:  can you see a simple 

derivation of Bragg’s law by 

requiring constructive interference 

between x-ray paths 1 and 2? 
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B. The Structure Factor Shkl 

We know that the scattered x-ray intensity is proportional to: 

Laue and Bragg remind us that for 

I  0 at the detector: 

where the sum runs over all of the lattice points and we assume that there is 

only a single atom at each lattice point. 
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BUT if we have a crystal with more than one atom per lattice point (a basis 

with two or more atoms), we must sum over all atoms in the basis as well! 



Defining the Structure Factor Shkl 

The sum of the scattered 

x-rays was found to be: 

The structure factor is a sum 

over all atoms in the basis: 
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Where the position of all 

atoms in the basis is given by: 
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An example 

For the simple cubic lattice 

with a one atom basis: 
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So the x-ray intensity is nonzero for all values of (hkl), subject to the Bragg 

condition, which can be expressed                            .  sin2 hkld
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Thus, if we know the x-ray 

wavelength and are given or can 

measure the angles at which each 

diffraction peak occurs, we can 

graphically determine a for the 

lattice!  How? 
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Another example 

Consider the body-centered cubic 

lattice with a one atom basis.  This is 

equivalent to the simple cubic lattice 

with a two atom basis, with atoms at 

[000] and [½½½]: 
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Remembering that the base vectors 

in direct and reciprocal space are 

related by: 
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We obtain: 

Now by inspection (or trial and error) 

we can see that there are only two 

possible values for the structure factor: 

hklS
2f    if h+k+l is even 

0     if h+k+l is odd 



The result 

Just as before, if we are given or can 

measure the angles at which each 

diffraction peak occurs, we can 

graphically determine a for the lattice!   
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So for a crystal with the bcc lattice and a one atom basis, the x-ray intensity is 

nonzero for all planes (hkl), subject to the Bragg condition, except for the planes 

where h+k+l is odd.  Thus, diffraction peaks will be observed for the following 

planes: 

(100) (110) (111) (200) (210) (211) (220) (221)  (300)  …                           

A similar analysis can be done for a crystal with the fcc lattice and a one atom 

basis, or in other words for the simple cubic lattice with a four atom basis.  A 

slightly different rule for the values of (hkl) is generated. 



But how can we determine the lattice type? 

Typically all we know is the angles at which diffraction peaks are found.  If we 

suspect a cubic lattice, how can we determine whether it is sc, bcc, or fcc?  This 

is your assignment in HW problems 3.1 and 3.7.  

(See the table on p. 52 for a list of possible h2 + k2 + l2 values for each lattice) 
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Once you make a plot for each lattice 

type and see which one is linear, you 

will know the lattice type and can then 

find the lattice constant a. 



C. Experimental Details of X-ray Diffraction 

X-ray sources 

 1.  high voltage tubes (30-50 kV, fixed wavelength) 

 2.  synchrotron facilities ($$, but tunable wavelength, very high intensity) 

Most of the radiation is continuously 

distributed across the energy 

spectrum, but sharp lines occur that 

are called characteristic x-ray lines.  

They are caused by electrons from 

higher energies falling down to an 

empty energy level from which an 

electron was ejected in a collision. 

In a high-voltage tube, electrons are accelerated through a kV potential 

difference and collide with a transition metal target (Cu, Ni).  As the 

electrons abruptly slow down after the collision, this deceleration causes EM 

radiation to be given off (“braking radiation” or Bremsstrahlung). 
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Techniques of X-ray Diffraction 

Laue back reflection 

 1.  “White” x-rays scatter from a single crystal sample 

 2.  Used to determine orientation of sample and lattice symmetry 

x-ray source 
sample 

film 

Spots appear on the film at 

locations determined by the Bragg 

condition for different (hkl) planes 



Techniques of X-ray Diffraction 

Debye-Scherrer powder diffraction 

 1.  Monochromatic x-rays scatter from a finely ground polycrystalline sample 

 2.  Used to determine lattice type and detailed crystal structure 

Monochromatic 

source 

sample 

Film or 

movable 

detector 

2 

Sample is finely ground so that 

essentially all of the (hkl) planes 

that can cause diffraction are 

present.  As a result, an intensity 

peak is measured for each of these 

planes: 
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D. Atomic Clusters (Nanoparticles) 

A bulk solid can be built up as more and more atoms are combined: 

Important questions: 

1. At what value of N does a cluster of (metal) atoms begin to display 

bulk-like behavior? 

2. What interesting properties do smaller clusters have, and how can 

they be used? 

Atom          Molecule            Cluster         Bulk Solid 

N:         1                   2-100                  10-104              > 105 

The answer to #1 typically depends on what property we are interested in, so 

there is no universal answer. 



Cluster Stability 

In the early 1980s a very interesting property of metal clusters was discovered:  

there are specific cluster sizes that are more stable than others nearby.  For Na 

and other alkali metals these “magic numbers” are: 

N = 8, 20, 34, 58, 92, 138, 196, … 

Why?   A simple explanation: 

1. Treat valence electrons (3s for Na) as “free” to move within the 

cluster volume 

2. Solve the Schrödinger equation for a simple model potential energy 

function (spherical infinite potential well) 

U = 0 inside U =  outside 
R 



Reason for “Magic Numbers” 

The energy level structure that comes from solving the Schrödinger equation 

is similar to that of the hydrogen atom, but without the same restriction on the 

orbital quantum number l: 

1s (2) (2) 

1p (6) (8) 

1d (10) (18) 

1f (14) (34) 
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2p (6) (40) 

2s (2) (20) 

1g (18) (58) 

orbital degeneracy 




